

LE FORC SHOW

CONFÉRENCES • EXPO • FESTIVITÉS

Swine Genetics: Past and Future

Daniel Godbout M.Sc. Agr.

Québec, December 11, 2019

2

Genetics has greatly evolved

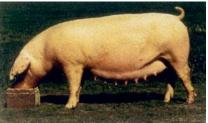
Ancestors: Europe and Asia – 25 million years ago

Origin of all breeds: European wild boar and Chinese pigs

Domestication of pigs: 6,000 to 8,000 B.C., numerous breeds were created then

http://www.thepigsite.com/info/swinebreeds.php *

* Various local breeds are excluded from this list


First a phenotype-based selection

Especially at the turn of the 19th century

On distinct traits:

- Structure
- Head
- Ear
- Colour

provided by National Swine Registry

provided by National Swine Registry

And what about the evolution of performances in 30 years!

Trait*	1988 (30-90 kg)**	2017 (30-130 kg)	Difference
Growth (g/d)	880	1,100	+ 220
Back fat (mm)	13.6	9.0	-4.6***
Feed conversion	2.45	2.00	-0.45***

* Average performance in a testing station

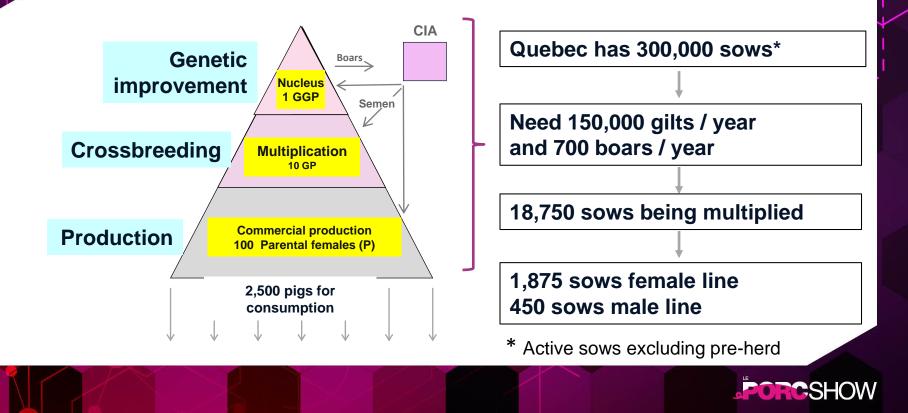
**Source: Federal-Provincial Swine Aptitude Control Program. 1988 Annual Report

*** On a pig weighing 40 kg more in the end

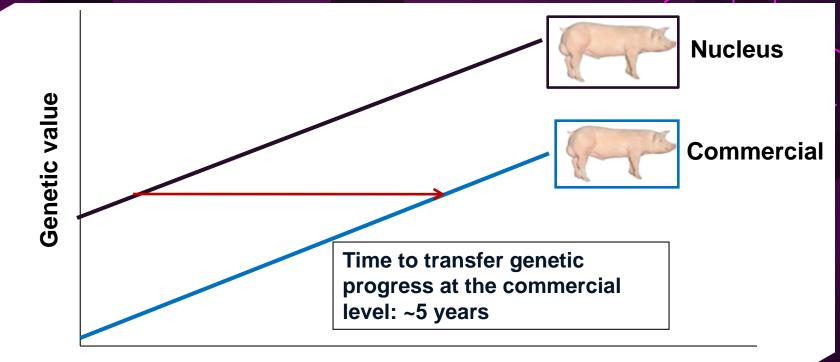
Animals with unseen potential

Today's potential reflects tomorrow's performance

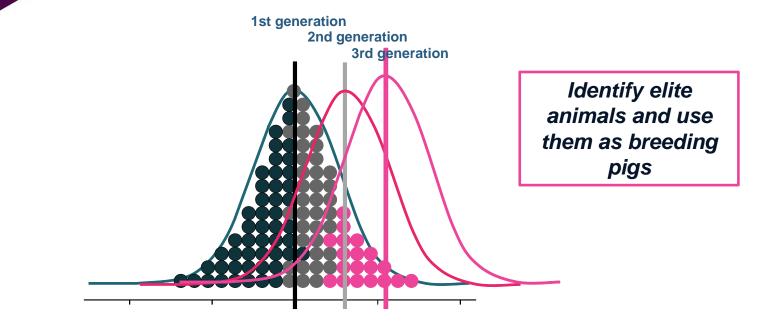
2019 nucleus performane	<u>ce</u>
Top 10% for growth:	1.34 kg/day
Top 10% for FC:	1.63
Top 10% of litter sizes:	22.1/litter


Goals of the presentation

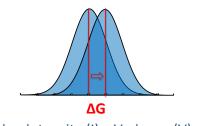
- 1- Understand the principles governing genetic progress
- 2- Identify the technologies that have modulated and will modulate genetic progress
- 3- Evaluate their future impacts on performances

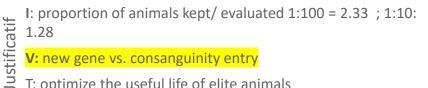


Swine production: A highly hierarchical diagram


Transmission of genetic progress

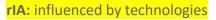
Time

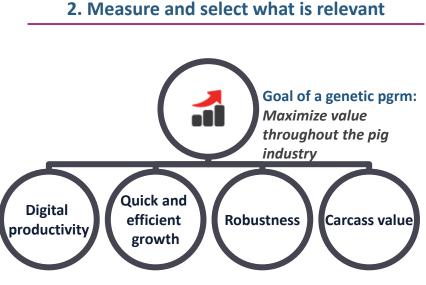

Goal of a selection program



Genetic progress is based on 2 pillars

1. Use levers that maximize the genetic gain




 $\Delta G = Selection intensity (I) \times Variance (V) \times Accuracy (rIA)$ Generation interval (t)

V: new gene vs. consanguinity entry

T: optimize the useful life of elite animals

Produce nutritious, tasty meat at the right price, according to high ethical standards

What traits to select?

Often limited by tools and technologies

Herd books

- Breed recognition, genealogy
- Breed standard maintenance

No genetic selection on traits measured before 1930

- First testing station 1935
- First farm program 1956
 - Selection based on growth and later on on fat
 - Swine then started to change

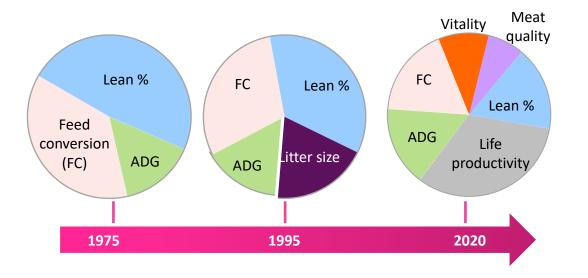
The possibilities have now increased tenfold

The list continues to grow

Access to technologies helps to measure a growing number of traits

Computers can process information

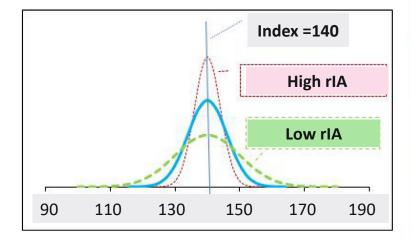
Costs are the main limitation, more possibilities



We've come a long way in 45 years!

Selection of a growing number of traits

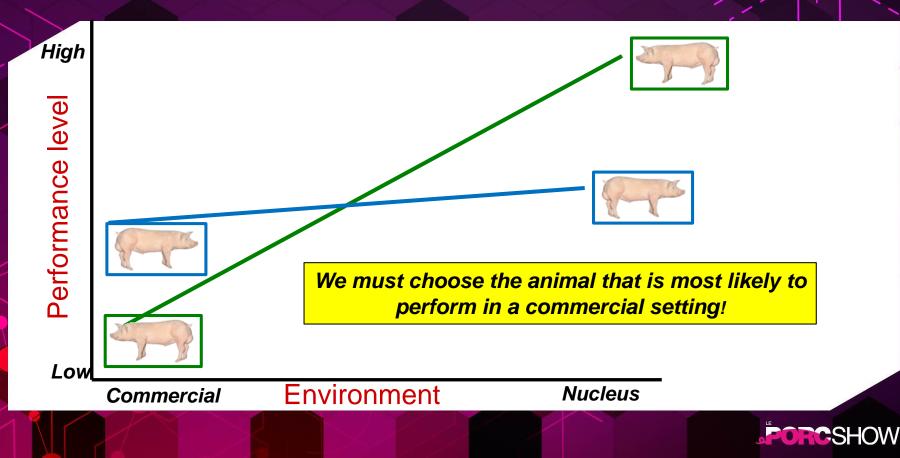
Today's selection criteria must take into account economic and social aspects


Nutritious, tasty meat at the right price, produced according to high ethical standards

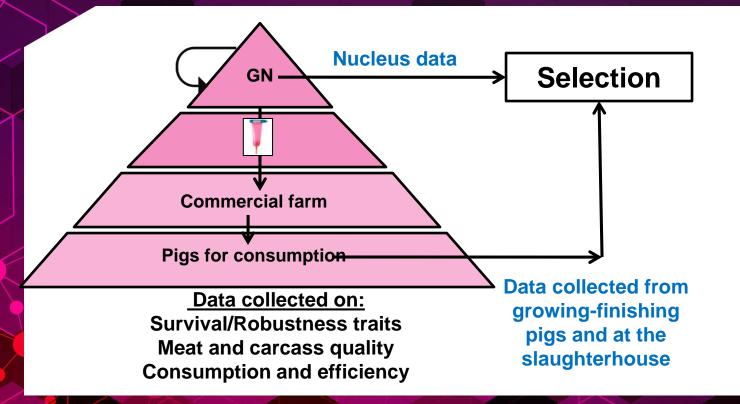
Levers now maximizing genetic progress

Accurate rIA evaluations are essential

- The higher the rIA, the more stable the index
- In turn, better genetic decisions are made
- Genetic progression is also more rapid


BLUP: The game changer

Statistics tool used to improve index accuracy


- 1. Uses all available sources of information (individuals, brothers, sisters, half-brothers, half-sisters, etc.)
- 2. Uses animal genealogy
- 3. Uses the correlation existing between traits
- 4. First used for production traits: ADG, fat, FC (1985)
- 5. Then, breeding traits: end of the 90s
- 6. It prompted an increase in the number of traits to select

Which 2 boars must we choose?

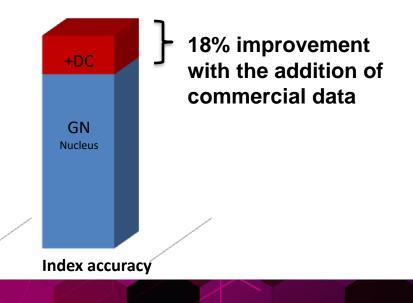
Measures in a commercial setting

FORCSHOW

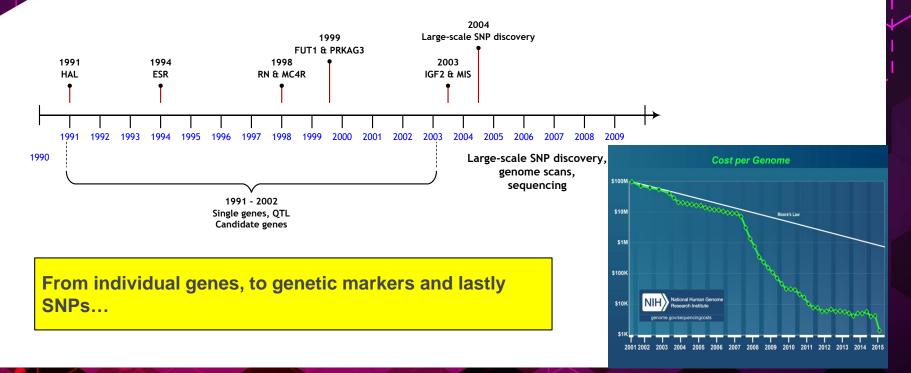
Why measures in a commercial setting?

Information	h² = 0.10	h²= 0.25	h²= 0.40
Own performance	0.32	0.50	0.63
2 parents	0.22	0.35	0.45
5 siblings	0.27	0.38	0.45
100 half-b/s	0.27	0.34	0.40
5 descendants	0.34 🗸 🗸	→ 0.50 ←	→ 0.60
100 descendants	0.84	0.93	0.96 🖊

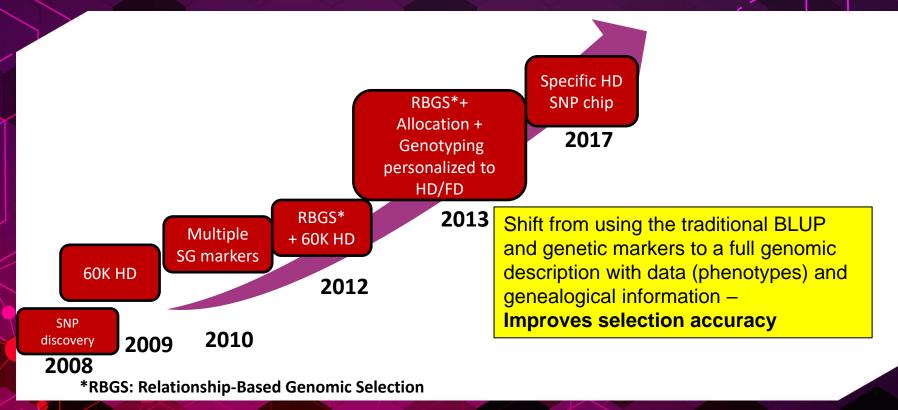
Data collection on the animal itself is desirable and often more accurate than that collected from parents, siblings or halfb/s.


Regardless of the h², the descendance measurement is always more accurate than those taken on the animal

* c² = 0,05 (B, S, HB, HS)


Greater selection accuracy of measures in a commercial setting

Commercial data→ greater accuracy→ Increased selectivity of elite individuals → Acceleration of annual genetic progress



Genomic: On the move for more than 30 years!

Evolution in the way genomic is used

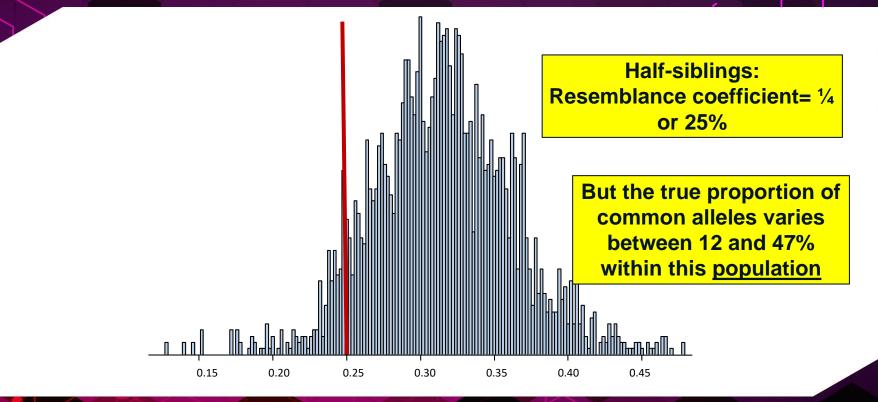
Genomic selection: Yes, but...

	Lign	ée A	Lign	ée B	Lign	ée C	Lign	ée D
Caractère	2005	2009	2005	2009	2005	2009	2005	2009
GMQ	4	13	4	5	3	8	8	4
СМЈ	1	10	0	2	2	5	3	8
Gras dorsal	3	11	7	8	5	7	7	6
Épaisseur de longe	1	13	3	6	2	8	6	8
pH24	2	8	2	8	2	4	7	8
Minolta L*	1	1	1	3	1	1	2	3
Mortalité pré-sevrage	0	5	0	4	0	4	0	9
Mortalité en poup.	0	8	0	9	0	5	0	11
Mortalité en croisfinition	0	7	0	10	0	7	0	14
Hernie scrotale et crypt.	0	0	0	0	0	0	2	4
Cote membres	1	12	6	5	1	9	3	5
Gras intra-musculaire	3	4	2	3	1	1	4	2
Total	16	92	25	63	17	59	42	82

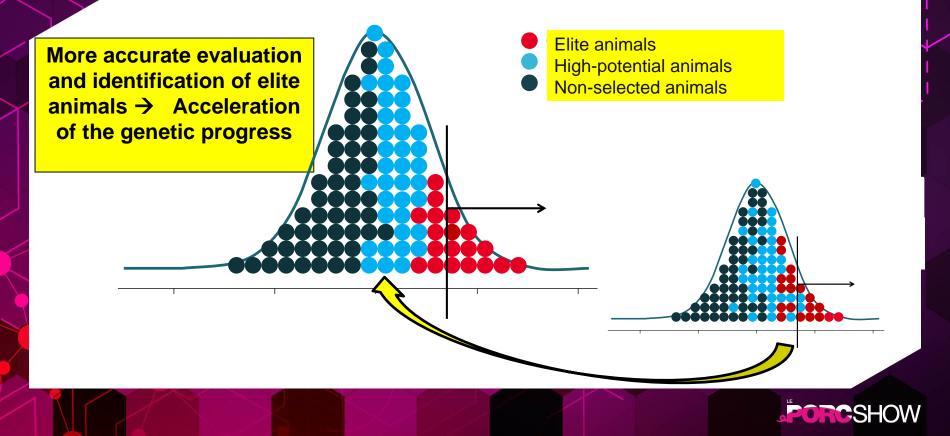
PORCSHOW

... It has given way to relationship-based genomic selection


- Based on science, it's the best genomic application for genetic improvement purposes
- It differs from the classic genomic selection that seeks to improve specific traits
- It replaces the use of the kinship matrix, which is strictly based on genealogy in the calculation of indices

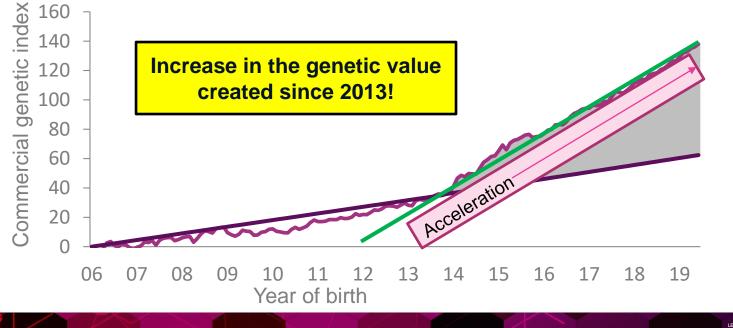

Transforming data into decisions

Les génotypes déterminent le profil génétique

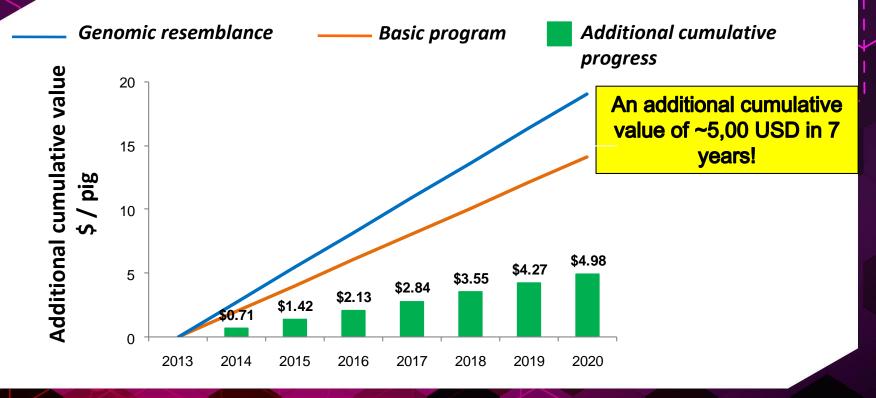


Another example: The relationship between half-siblings

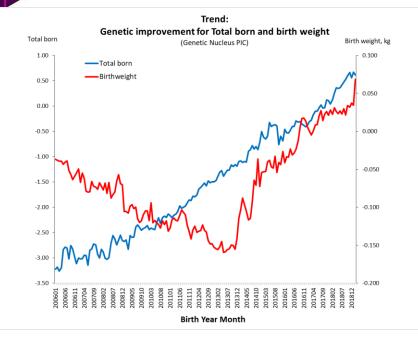
PORCSHOW

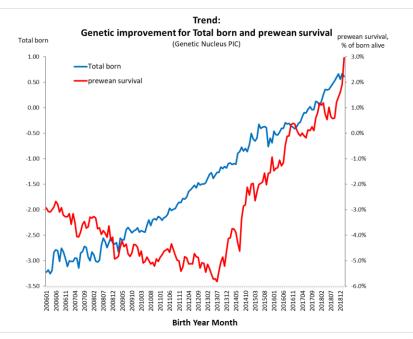

Goal of the relationship-based genomic selection

35% genetic progress improvement


Relationship-based genomic selection between individuals vs. BLUP

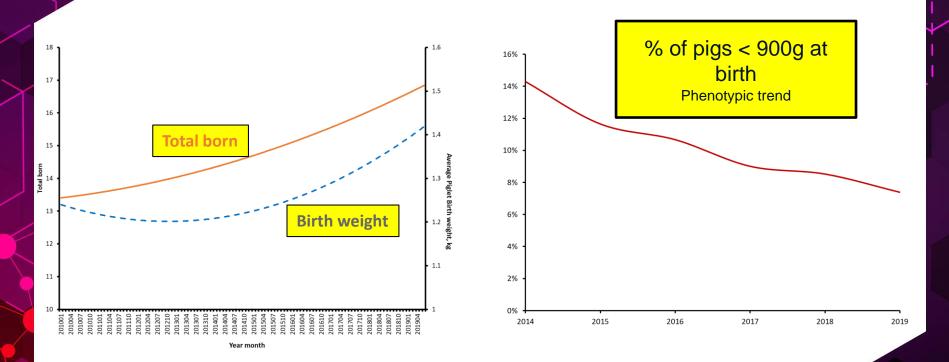
Commercial genetic trend




The annual progress made is cumulative

FORCSHOW

Better mitigating genetic antagonisms



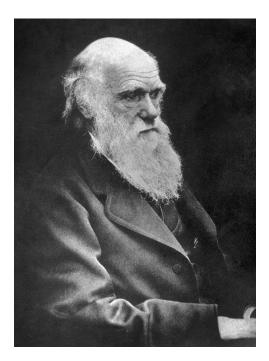
FORCSHOW

Average line 2 and 3

BPig Improvement Company.

Surreal impact on the phenotype Genetic selection -> must be a sign of progress on the animals

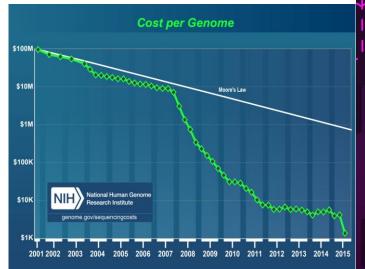
FORCSHOW


This improvement will be conveyed at the commercial level

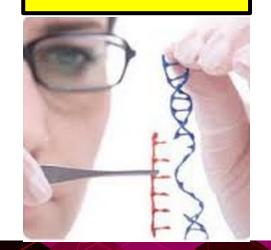
Trait	2018	Annual progress	2028
Piglets/sow/year	33.0	1.1	44.0
Weaned/litter	13.1	0.45	17.6
Weight of weaned piglets/sow/year (kg)	185	6.8	253
Amount weaned/sow/lifetime	60.0	1.3	73.0
Weight sold/sow/year (kg)	3,865	173	5,595
% pigs sold	93	0.35	96.5
Market weight (kg)	130	1.3	143
Post-weaning feed conversion	2.20	0.03	1.90

FORCSHOW

What will the next 10-20 years consist of?


- 1. Genome sequencing
- 2. Gene editing
- 3. New traits

Full genome sequencing


- Identification of the 2 billion+ pairs of nucleotides
- Allocation for genotyped animals with 5K, 15K, 50k, 60k, 80K chips to the full DNA sequence on thousands of animals in the genomic database
- Improvement of the rIA, thus accuracy, thus progress acceleration
- Discovery of new mutations, new genes of interest

Gene editing

Gene editing is an extremely accurate process

Nucleotides can be:

- added
- removed
- replaced

Swine: Demonstration of swine resistance to the PRRSV

First results published in December 2015

- Pigs were created through the genomic editing of a few nucleotides of the CD163 gene. The specific form of this precise gene provides <u>virus</u> <u>resistance</u>
- No foreign DNA was inserted in the pig
- This discovery has since been confirmed by numerous universities worldwide

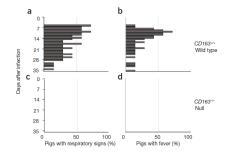


Figure 1 Clinical signs during acute PRRSV infection, (a-d) Results shown are compiled daily assessments for the presence of respiratory signs and fever for $CDI63^{++}$ (n = 7) and $CDI63^{+-}$ (n = 3) pigs. The percentage of pigs with respiratory signs (a,c). The percentage of pigs with a fever (b,d). Fever was considered positive if it was ≥ 104 °F (normal body temperature, 101.6–103.6 °F). Respiratory scores ranged from 0: normal, 10: 1: mild dyspines and/or tachypnea when stressed (when handled), 2: mild dyspines and/or tachypnea when at rest, 5: severe dyspines and/or tachypnea when stressed (when handled), 4: moderate dyspines and/or tachypnea whore at rest. The percentage of piglets that had a fever or any sign of respiratory stress (a score of ≥ 1) at the various days of the challenge are shown. Note that the CD163^{-/-} piglets displayed no signs of either respiratory stress or fever.

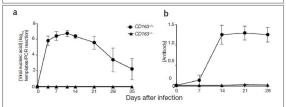
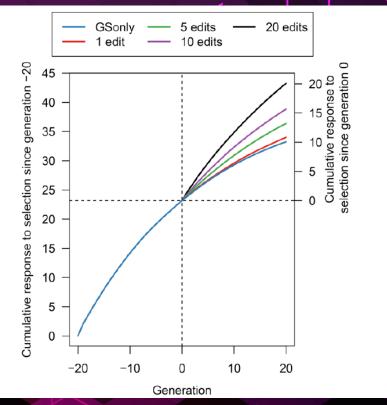


Figure 3 PRRSV-specific nucleic acid and antibody. (a,b) Mean and s.d. of PRRSV nucleic concentrations (a) and antibody (b) in serum from $CD163^{++}$ (n = 7) and $CD163^{--}$ (n = 3) pigs (one replication) are shown. Sample to positive ratio = the median fluorescent intensity (MFI) of the sample divided by the MFI of the positive control.

Implementing pigs stemming from gene editing


Technology	 Confirm the validity of the discovery Optimize the editing process Produce pigs stemming from the editing process
Regulation	 Commitment for approval with the FDA (United States) Initiate contact with international regulatory bodies Cooperate with various bodies of interest
Product acceptance	 Make the technology and its benefits known Support public debates Research with the industry & consumers Agreement with meat purchasing countries (ex. China)

Gene editing potential

- For a set number of selected traits, genetic progression slows down over time
- Each edited gene brings additional economic value
- It can be set within a few generations

Traits potentially influenced by gene editing

1. Diseases (African swine fever virus, GET, DEP, influenza)

- Existence of vaccines
- Economic advantages of better control
- ➢ Resistance ≠ resilience, tolerance

2. And for the other criteria...

- Current selection criteria
- Sexual smells
- Others???

Home / News /

British 'Pig 26' in drive to create disease-resistant GM animals

Published time: April 15, 2013 23:39

New traits

1. Ability to store and process lots of data

- Computer processing power
- Algorithms allowing for information to be preprocessed
- 2. Real time measurements will be a game changer
 - Increased camera use
 - Artificial intelligence

New traits

1. Phenotype measuring from all angles

- Repeated measures
 - How the animal drinks and eats
 - When the animal gets sick, isn't feeling well
 - Etc.

2. Pig behaviour and animal well-being

- Defining the trait is a challenge in itself
- Correlation between piglet<-> fattening pig <-> sow
- No evidence today (h2=0)
- Data storage and analysis
- 3. Other traits
 - Function of technologies available and economic interest

- 1. A growing range of selection criteria
- 2. Improvement of (rIA) accuracy means
 - Genetic progress that keeps getting more rapid
 - More predictable results (sector)
 - 1. + piglets born, weaned and at weight + raised
 - 2. + full value pigs at the slaughterhouse
 - 3. Very rapid growth and low conversion
 - 4. Improvement in meat quantity and quality
- 3. Challenge for all fields to express the full potential
 - Guides and manuals
 - Farming management, nutrition, health, etc.

